
Ghosts of Departed Proofs (Functional Pearl)
Matt Noonan

Kataskeue LLC, Input Output HK
Ithaca, NY, USA

mnoonan@kataskeue.com

Abstract
Library authors often are faced with a design choice: should
a function with preconditions be implemented as a partial
function, or by returning a failure condition on incorrect use?
Neither option is ideal. Partial functions lead to frustrating
run-time errors. Failure conditions must be checked at the
use-site, placing an unfair tax on the users who have ensured
that the function’s preconditions were correctly met.
In this paper, we introduce an API design concept called

“ghosts of departed proofs” based on the following observa-
tion: sophisticated preconditions can be encoded in Haskell’s
type system with no run-time overhead, by using proofs
that inhabit phantom type parameters attached to newtype
wrappers. The user expresses correctness arguments by con-
structing proofs to inhabit these phantom types. Critically,
this technique allows the library user to decide when and
how to validate that the API’s preconditions are met.
The “ghosts of departed proofs” approach to API design

can achieve many of the benefits of dependent types and
refinement types, yet only requires some minor and well-
understood extensions to Haskell 2010. We demonstrate the
utility of this approach through a series of case studies, show-
ing how to enforce novel invariants for lists, maps, graphs,
shared memory regions, and more.

CCS Concepts • Software and its engineering → For-
mal software verification; Polymorphism; Software design
tradeoffs; • Theory of computation → Logic and verifica-
tion;

Keywords API design, software engineering, formal meth-
ods, higher-rank types

ACM Reference Format:
Matt Noonan. 2018. Ghosts of Departed Proofs (Functional Pearl).
In Proceedings of the 11th ACM SIGPLAN International Haskell Sym-
posium (Haskell ’18), September 27–28, 2018, St. Louis, MO, USA.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
Haskell ’18, September 27–28, 2018, St. Louis, MO, USA
© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-5835-4/18/09. . . $15.00
https://doi.org/10.1145/3242744.3242755

ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3242744.
3242755

1 Introduction
[Rico Mariani] admonished us to think about
how we can build platforms that lead developers
to write great, high performance code such that
developers just fall into doing the “right thing”.
That concept really resonated with me. It is the
key point of good API design. We should build
APIs that steer and point developers in the right
direction.

— Brad Abrams [1]
What is the purpose of a powerful type system? One prac-

tical perspective is that a type system provides a mechanism
for enforcing program invariants at compile time. The desire
to encode increasingly sophisticated program invariants has
led to a vast expanse of research on more complex type sys-
tems, including dependent types [2, 3], refinement types [6],
linear types [22], and many more. But despite this menagerie
of powerful type systems, workaday Haskell programmers
have already been able to encode surprisingly sophisticated
invariants using nothing more than a few well-understood
extensions to the Damas-Hindley-Milner type system.

An early success story is the STmonad, which allows pure
computations to make use of local, mutable state. A phantom
type parameter and a clever use of rank-2 types in the ST
monad’s API gives a compile-time guarantee that the local
mutable state is invisible from the outside, and hence the
resulting computation really is pure. As we will see, this trick
is just the tip of a rather large iceberg.
In this paper, we will take the perspective of a library

author, writing in Haskell 2010 (plus a few battle-tested lan-
guage extensions). As a library author, our goal will be to
design safe APIs that are also ergonomic for the end user.
“Safe” means that we want to prevent the user from causing
a run-time error. “Ergonomic” means that the correct use of
our API must not place an undue burden on the user.

1.1 Common Idioms for Handling Pre-conditions
No matter the language, a programmer often has to write
functions that place constraints on their input. For example,
the venerable head function will extract the first element of
a list, but asks its users to only give it a non-empty list to
operate on. Now put yourself in the shoes of head’s author:
how can you ensure that head will be used properly? Let us
recount a variety of strategies used in the wild.

https://doi.org/10.1145/3242744.3242755
https://doi.org/10.1145/3242744.3242755
https://doi.org/10.1145/3242744.3242755

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA M. Noonan

-- Unsafe API using non-total functions.

head :: [a] -> a

head xs = case xs of

(x:_) -> x

[] -> error "empty list!"

endpts = do

putStrLn "Enter a non-empty list of integers:"

xs <- readLn

if xs /= [] then return (head xs, head (reverse xs))

else endpts

--

-- Returning Maybe / Optional values. Safe, but requires

-- the caller to pattern-match on the Maybe at every use,

-- even when the list is known to be non-empty. Frustrated

-- users cannot be blamed for using `fromJust`!

headMay :: [a] -> Maybe a

headMay xs = case xs of

(x:_) -> Just x

[] -> Nothing

safeEndpts = do

putStrLn "Enter a non-empty list of integers:"

xs <- readLn

case headMay xs of

Just x -> return (x, fromJust (headMay (reverse xs))

_ -> safeEndpts

--

-- "Ghosts of Departed Proofs". Safe. Does not return

-- an optional value; preconditions are checked early

-- and carried by "ghosts" (specialized phantom types).

rev_cons :: Proof (IsCons xs) -> Proof (IsCons (Rev xs))

gdpReverse :: ([a] ~~ xs) -> ([a] ~~ Rev xs)

gdpHead :: ([a] ~~ xs ::: IsCons xs) -> a

gdpHead xs = head (the xs) -- safe!

gdpEndpts = do

putStrLn "Enter a non-empty list of integers:"

xs <- readLn

name xs $ \xs -> case classify xs of

IsCons proof ->

return (gdpHead (xs ...proof),

gdpHead (gdpReverse xs ...rev_cons proof))

IsNil proof -> gdpEndpts

Figure 1. Idioms for implementing the head function, along
with usage examples. The gdpHead function can only be
invoked by presenting a proof that the list is non-empty,
combining the simplicity of the first example with the safety
of the second. rev_cons is a proof combinator exported by
the library to help the user prove that the reverse of a non-
empty list is also non-empty. See section 5 for details.

Run-time failure on bad inputs. The simplest approach is
to have a function just fail on malformed inputs. The failure
mode can be an immediate run-time error (as in head from
Figure 1), an exception, or undefined behavior (as in C++’s
std::vector<T>::front()).

Returning a dummyvalue. To avoid run-time errors, some
APIs may have a “dummy value” for indicating the result
of a failed operation. For example, Common Lisp’s car and
golang’s Front() both return nil when passed an empty
list. The caller must explicitly check for this dummy value.
Other contortions may be needed if the container is also
allowed to hold nil, to disambiguate between “the input list
is empty” and “nil is the first element of this list”.

Returning a valuewith an option type. A related strategy
for languages with stricter typing discipline is to use an
“option type,” such as Haskell’s Maybe or Scala’s Option. A
value of type Maybe T cannot be used where a value of type
T was expected, so the user must explicitly pattern match on
the optional value to extract the result and handle the error
case. This approach may lead to frustration when the user
believes that the error case is not possible, as when headMay
is applied to the reverse of a non-empty list in Figure 1.

Modifying input types to exclude bad inputs. Finally, the
API designer may select more restrictive types for the in-
puts in order to make the function total. For example, some
Haskell libraries make use of the NonEmpty type for lists
that contain at least one element. The head function then
becomes total. The user can prove that their list is non-empty
by making use of the smart constructor nonEmpty :: [a]
-> Maybe (NonEmpty a). The drawbacks include duplication
(do we re-implement length for NonEmpty?) and awkward-
ness when encoding preconditions that relate several inputs
(e.g. requiring two lists to have the same length).

1.2 Leading the User into Temptation
The “return-an-optional-value” idiom is well-known and
popular in the functional programming world. The author of
a library function that returns Maybe a can certainly sleep
well at night, content in the knowledge that their function
will never cause a run-time error.

But what about the users of that library? Has the library
author helped the user stay on a virtuous path, or have they
led the user into temptation?

In fact, the author of the library has merely pushed extra
responsibility onto the user. Every time the user applies a
function that uses the optional-return idiom, they are obliged
to test the return value and handle the error case. Even worse,
the user is still asked to handle the error case when they have
correctly ensured that the function’s preconditions have been
met! The library author sleeps well, while even the most
vigilant users are forced to toil against those impossible
error cases.

No wonder so many well-meaning users reach for unsafe
functions like fromJust! They have already proved (to their

Ghosts of Departed Proofs Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

own satisfaction) that the function is being used properly, so
they rightly feel justified in ignoring the error case entirely.
But nowwe see how the user has been led into a pit of despair:
they have ended up with a program that is exactly as fragile
as one where the library author had used the run-time-failure
idiom!1 Even if the user has mentally constructed a proof that
this specific use of fromJust is safe now, who can say what
will happen as the software changes over time? Without
tooling to ensure that the user’s proof remains valid, the
software is left in a brittle state.
For example, a recent snapshot of hackage reveals over

2000 instances where the partial function fromJust is ap-
plied to the result of Data.Map’s lookup. Any one of these
instances may be a vignette of a programmer falling into
a pit of despair: they had a mental proof that a certain key
must be present in the map, but possessed no mechanism for
communicating that proof to the lookup function. In frus-
tration, they made the pragmatic—but unsafe—decision to
introduce partiality.

1.3 Who Is to Blame?
It would be easy to lay the blame at the foot of the the
user. After all, they were the ones who brought in partial
functions! But this perspective misses the point: when we
return a Maybe, even a perfect user who has done their due
diligence will be forced to handle an error case—exactly
the error case that they were so careful to avoid! The real
problem is that the conversion from a partial function to a
Maybe-returning function is a bit of a cheat on the part of
the library author. Instead of adding Nothing to a function’s
codomain, why not simply restrict the function’s domain to
the set of valid inputs? The user would still be responsible for
ensuring that the inputs are valid but, having done so, they
would not be asked to introduce a spurious error handler.

1.4 An Alternative: Ghosts of Departed Proofs
In the following sections, we will elaborate a design concept
for creating libraries that supports a dialogue between library
and user: the library can require that certain conditions are
met, and the user can explain how they have met those
obligations. The key features of this approach are as follows:

Properties and proofs are represented in code. Proofs are
concrete entities within the host language, and can be ana-
lyzed or audited independently. In the tradition of the Curry-
Howard correspondence, propositions are represented by
types, and the proof of a proposition will be a value of that
type.

Proofs carried by phantom type parameters. To ensure
that proof-carrying code does not have a run-time cost,
proofs will only be used to inhabit types that appear as
phantom type variables attached to newtype wrappers. The
newtype wrapper is erased during compilation, leaving no
1In fact, things are slightly worse: we have also introduced a little bit of
extra allocation and indirection for creating and unpacking the return value
in the non-error case.

run-time cost and no evidence of these proofs in the final
executable. The phantom type parameter is only used as a
mechanism for transmitting the “ghost of a departed proof”
to the library API. The name “ghost proof” is meant to sug-
gest the related concept of ghost variables in software ver-
ification [10], and to emphasize the idea that the proof is
non-corporeal: no artifacts related to the proof should ever
be discernible from the compiler’s output.

Library-controlled APIs to create proofs. Library authors
should retain control over how domain-relevant proofs can
be created. That is, the library author should be the only
one able to introduce new axioms about the behavior of
their API. This may mean exporting functions that create
values with known properties, or that classify a value into
mutually disjoint refinements, or that introduce existentially-
quantified properties (name in Figure 2, runSt in Figure 5, or
withMap in Figure 8).

Combinators for manipulating ghost proofs. Libraries
may export a selection of combinators so that the user can
mix and match the evidence at hand to produce a satisfactory
proof of a safety property. The goal is to enrich the vocabu-
lary of the user, so that they can productively communicate
their proofs to the library.

1.5 The Structure of This Paper
In this paper, we will use a series of case studies to show how
library authors can use ghosts of departed proofs (GDP) to
create APIs that are both safe and ergonomic: the user cannot
cause a run-time error when using the API, and incorrect
uses of the API will become compile-time errors. But the
APIs must be straightforward enough that the user is not
tempted to subvert the library’s safety guarantees by using
unsafe functions. Crucially, we want the user to be able to
communicate their informal proofs to the library. If the user
believes that a precondition has been met, they should be
able to explain why to the library!

The GDP design concept is relatively simple to implement.
Each case study includes example library code, along with
usage demonstrations. The examples in this paper are self-
contained, and are bundled together in a project suitable for
further experimentation [13]. The proof combinators and
other machinery from Section 5 are available as the gdp
library on Hackage [14].

1.6 A Very Short Tutorial on Safe Coercions
Several of the examples in this paper rely on a basic under-
standing of safe coercions, a relatively recent addition to GHC
Haskell [4]. The details of safe coercions are a bit technical,
but for the purposes of this paper it suffices to know the
following operational facts:

• The types T and newtype N = N T have the same
run-time representation.

• coerce :: Coercible a b => a -> b can be
used as a zero-cost safe cast from a to b, whenever the
Coercible a b constraint is satisfied.

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA M. Noonan

• If N is a newtype of T, then the constraints Coercible
N T and Coercible T N hold in any module where
the constructor of N is visible.

We will make repeated use of this last property to help en-
force encapsulation. Suppose a library author creates a mod-
ule that defines N as a newtype of T, but does not export the
constructor. Then the library author can use coerce to freely
cast between T and N, but users of that library only see N as
an opaque type, and are not able to coerce it to T.

2 Case Study #1: Sorted Lists
It is almost inevitable that a programmer will, at some point,
be asked to work with lists that have been sorted in one
way or another. To ensure correctness, the programmer may
need to carefully manage various invariants, such as “all of
these lists must have been sorted by the same comparator”.
For a concrete example, consider these sortBy and mergeBy
functions:
sortBy :: (a -> a -> Ordering) -> [a] -> [a]

-- Usage constraint: in `mergeBy comp xs ys`, the

-- input lists `xs` and `ys` should also be sorted

-- by the same comparator `comp`.

mergeBy :: (a -> a -> Ordering) -> [a] -> [a] -> [a]

mergeBy comp xs ys = go xs ys

where

go [] ys' = ys'

go xs' [] = xs'

go (x:xs') (y:ys') = case comp x y of

GT -> y : go (x:xs') ys'

_ -> x : go xs' (y:ys')

This efficient O(n +m) implementation of mergeBy is easy
to write, but it comes with a hidden cost to the end user.
Anybody who uses mergeBy must ensure that the two input
lists have been sorted by the same comparator. If the user
accidentally fails to sort the two inputs, or does not sort them
in the same way, mergeBywill quietly produce nonsense and
introduce a subtle bug.
It would be possible to implement a version of mergeBy

that carefully inspected the inputs xs and ys as it proceeded,
and only produced a result if the inputs met the sorting
requirement. But this would impose a runtime cost on ev-
ery use of mergeBy, increase the complexity of its imple-
mentation, and change the result type to Maybe [a]. And
then what? Most users of mergeBy would argue to them-
selves “This is absurd! I already know that I sorted the input
lists properly. This function will never result in Nothing.”
It would be hard to blame the user when they reach for an
unsafe function like fromJust.
Clearly, everybody loses out in the above scenario. The

library author is inconvenienced by the increased imple-
mentation complexity. The user is inconvenienced by the
decreased performance and the need to pattern match on
the result, even when they already know the outcome of

module Named (Named, type (~~), name) where

import Data.Coerce

newtype Named name a = Named a

type a ~~ name = Named name a

-- Morally, the type of `name` is

-- a -> (exists name. (a ~~ name))

name :: a -> (forall name. (a ~~ name) -> t) -> t

name x k = k (coerce x)

Figure 2. A module for attaching ghostly names to values.
The rank-2 type of name, making use of a polymorphic con-
tinuation, is oneway to emulate an existential type inHaskell.
By hiding the constructor of Named, this module ensures that
name is the only way to introduce a name for a value.

that match. No wonder that the status quo is to prominently
display a stern warning in the documentation, admonishing
any user who tries to mergeBy what they didn’t sortBy.

But what if the user really does have proof that the input
lists have been sorted properly? Can we devise a mechanism
that allows the user to communicate this proof to mergeBy?

2.1 Conjuring a Name
The first challenge is how to express the idea of two compara-
tors being “the same”. In a language that supports equality
tests on functions, you could imagine a solution where the
sortBy function returns both the sorted list and a reference
to the comparator that was used; mergeBy could then check
that the comparators matched. But this has a run-time cost
for carrying around the comparator references, and it still
would require mergeBy to return Nothing if it was given
bogus arguments.
A different solution, in line with the GDP concept, is to

introduce a newtype wrapper equipped with a phantom
type parameter name. In code, we will write this wrapper as
a ~~ n, to be read as “values of type a with name n”. To
ensure that there is no run-time penalty for using names,
a ~~ n is implemented as a newtype around a, with a phan-
tom type parameter n. A simple module for named values
can be found in Figure 2; the key feature is the exported name
function that expresses the concept “any value can be given
a name”.

To emulate an existentially-quantified type in Haskell, we
will have to jump through a small hoop with name. Instead
of directly returning a value with a name attached, name
says to the user “tell me what you wanted to do with that
named value, and I’ll do it for you”. This slight-of-hand is
responsible for the rank-2 signature of name. The user must
hand name a computation that is entirely agnostic about the
name that will be chosen. More on this point in section 2.4.
Once we have introduced names, it becomes handy to

have a uniform way of stripping names and other phantom

Ghosts of Departed Proofs Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

module Sorted (Named, SortedBy, sortBy, mergeBy) where

import The

import Named

import Data.Coerce

import qualified Data.List as L

import qualified Data.List.Utils as U

newtype SortedBy comp a = SortedBy a

instance The (SortedBy comp a) a

sortBy :: ((a -> a -> Ordering) ~~ comp)

-> [a]

-> SortedBy comp [a]

sortBy comp xs = coerce (L.sortBy (the comp) xs)

mergeBy :: ((a -> a -> Ordering) ~~ comp)

-> SortedBy comp [a]

-> SortedBy comp [a]

-> SortedBy comp [a]

mergeBy comp xs ys =

coerce (U.mergeBy (the comp) (the xs) (the ys))

Figure 3. A module for working with lists that have been
sorted by an arbitrary comparator. The refinement SortedBy
comp is used to denote values that have been sorted by the
comparator named comp.

data from a value. We do this with a simple two-parameter
typeclass, like so:
class The d a | d -> a where

the :: d -> a

default the :: Coercible d a => d -> a

the = coerce

By using this default signature for the, most instances of
The can be declared with an empty body:
instance The (a ~~ name) a

The default method’s use of a safe coercion helps ensure that
forgetting a value’s name incurs no run-time cost.

2.2 Implementing a Safe API for Sorting and
Merging

Now that we know how to attach ghostly names to values,
we can tackle the design of a safe and ergonomic interface
to mergeBy. In Figure 3, we begin by defining a newtype
wrapper SortedBy comp that represents the predicate “x has
been sorted by the comparator named comp”. The wrapper’s
meaning is imbued by the type of sortBy, which takes a
named comparator and a list, and produces a list that has
been SortedBy comp. Note that by not exporting SortedBy’s
constructor, we have ensured that the only way to obtain a
value of type SortedBy comp [a] is through the sortBy or

import Sorted

import Named

main = do

xs <- readLn :: IO [Int]

ys <- readLn

name (comparing Down) $ \gt -> do

let xs' = sortBy gt xs

ys' = sortBy gt ys

print (the (mergeBy gt xs' ys'))

Figure 4. Using the module developed in Figure 3. For types
with an Ord instance, comparing Down produces a compara-
tor for (>) that sorts in the opposite of the usual order.

mergeBy functions. The user is not allowed to assert that a
list is SortedBy comp by fiat.
The implementation is straightforward enough: we use

the to coerce away the name of the comparator, apply the
simpler version of sortBy from Data.List, and then intro-
duce the SortedBy comp predicate by coercing the result.
Since the coercions have no run-time effect, the code gener-
ated by the compiler for our GDP-style sortBy is simply a
call to Data.List’s sortBy!
Similarly, the generated code for our mergeBy will just

call the “normal” mergeBy. But notice the argument types
of the GDP-style mergeBy in Figure 3. The user must hand
mergeBy a named comparator, plus two lists that have been
sorted by that very same comparator. No stern warnings in
the documentation are required: if the user tries to mergeBy
what they didn’t sortBy, the program will simply fail to
compile!

We have successfully developed a safe API for sortBy and
mergeBy, but how ergonomic is it? A usage example appears
in Figure 4. The program is almost identical to one that uses
the standard versions of sortBy and mergeBy, except for the
line where we attach a ghostly name to comparing Down.
We are asking very little more from the user, yet end up with
an API that cannot be used incorrectly.

2.3 Applications to User Code
Although the library author retains control over the intro-
duction of ghost proofs, the user is still able to leverage these
proofs for their own purposes, beyond the library author’s
original design. For example, the user can write a simple
function that extracts the minimal element of a list with
respect to a given comparator:
minimum_O1 :: SortedBy comp [a] -> Maybe a

minimum_O1 xs = case the xs of

[] -> Nothing

(x:_) -> Just x

Thanks to the meaning given to SortedBy comp by the
Sorted API, this user-defined function offers a strong guar-
antee that it can only be called on a sorted list. Despite being
user-defined, this function cannot be used incorrectly. Did

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA M. Noonan

you forget to sort the list before calling minimum_O1? Then
your program will not compile.

2.4 Aside: On the Danger of Naming a Ghost
Let us return for a moment to the somewhat unusual type
of name in Figure 2. Is all of this business about rank-2 types
really necessary, or is it merely ivory tower bloviation? You
may well wonder, why not just have a function with a simple
type like this:
any_name :: a -> (a ~~ name)

any_name = coerce

At its core, the question is really about who gets to choose
what name will be. In the signature of any_name, the caller
gets to select the types a and name. In particular, they can
attach any name they would like! If that still does not sound
so bad, consider this code:
data Simon

up, down :: (Int -> Int -> Ordering) ~~ Simon

up = any_name compare

down = any_name (comparing Down)

list1 = sortBy up [1,2,3]

list2 = sortBy down [1,2,3]

merged = the (mergeBy up list1 list2) :: [Int]

-- [1,2,3,3,2,1]

The user has decided to name two different functions Simon,
subverting the guarantees offered by the API of the Sorted
module. It is dangerous to name a ghost!

Now compare this to the analogous program, using name
instead of any_name:
name compare $ \up ->

name (comparing Down) $ \down ->

let list1 = sortBy up [1,2,3 :: Int]

list2 = sortBy down [1,2,3]

in the (mergeBy up list1 list2)

Attempting to compile this program results in a type error:

Couldn't match type "name1" with "name"
...

Expected type: SortedBy name [Int]
Actual type: SortedBy name1 [Int]

What is the critical difference between these two examples?
In the first, a user is allowed to create a named value by fiat.
In the second, the user is only allowed to consume a named
value, by providing a polymorphic function that can work
with any named value. The library’s API provides a helper
function—in this case, name—for applying the consumer to a
normal, unnamed value. In practice, it is as if the library has
a secret supply of names, and selects one to use in a manner
that is not predictable (or even inspectable!) to the user.

3 Case Study #2: Sharing State Threads
The trick for using rank-2 types to conjure names outside
of the user’s control was inspired by the ST monad and its
rank-2 runST :: (forall s. ST s a) -> a function [9].
In this brief case-study, we elaborate the connection between
the ST monad and GDP-style names. The new perspective
suggests novel extensions to the ST API. In Figure 5 we recall
the basic ST API [9], writing St to disambiguate our version
from the existing type in Control.Monad.ST.
In their safety analysis of the ST monad, Timany et al.

proposed to think of the s parameter as representing a name
attached to a region of the heap [18]. We can think of ST
s as acting like some kind of informal State monad over
named regions, like in this Haskell-ish pseudocode:
data Region = Region

type St s a = State (Region ~~ s) a

runSt :: (forall s. St s a) -> a

runSt action = name Region (evalState action)

The notion of treating the ST monad’s phantom type as a
region name immediately leads to ideas for other primitives.
Once we can name regions, why not go on to invent more
detailed names to describe the minute contours of those
regions? For example, let us see what happens if we add a
binary type constructor ∩ so that s ∩ s’ names the region
at the intersection of s and s’. We are quickly led to an API
similar to Figure 6 that supports a new capability: individual
sub-computations, at their discretion, may decide to share
mutable reference cells with other sub-computations.

runSt :: (forall s. St s a) -> a

newRef :: a -> St s (a ∈ s)

readRef :: (a ∈ s) -> St s a

writeRef :: (a ∈ s) -> a -> St s ()

Figure 5. The standard “state thread” API. We write a ∈ s
to denote a reference cell of type a in the memory region
named s. In Control.Monad.ST, we would write a ∈ s as
STRef s a.

runSt2 :: (forall s s'. St (s ∩ s') a) -> a

liftL :: St s a -> St (s ∩ s') a

liftR :: St s' a -> St (s ∩ s') a

share :: (a ∈ s) -> St s (a ∈ (s ∩ s'))

use :: (a ∈ (s ∩ s')) -> (a ∈ s)

symm :: (a ∈ (s ∩ s')) -> (a ∈ (s' ∩ s))

Figure 6. Extending the state thread API with shared refer-
ences.

Ghosts of Departed Proofs Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

stSharingDemo :: Bool

stSharingDemo = runSt2 $ do

-- In the "left" memory region, create and return

-- two references; one shared, and one not shared.

(secret, ref) <- liftL $ do

unshared <- newRef 42

shared <- share =<< newRef 17

return (unshared, shared)

-- In the "right" memory region, mutate the shared

-- reference. If we attempt to access the non-shared

-- reference here, the program will not compile.

liftR $ do

let mine = use (symm ref)

x <- readRef mine

writeRef mine (x + 1)

-- Back in the "left" memory region, verify that the

-- unshared reference still holds its original value.

liftL $ do

check <- readRef secret

return (check == 42)

Figure 7. An ST-style pure computation using local mutable
references. Although the secret reference is in scope during
the calculation in the “right” region, any attempted access
will fail to compile.

In effect, runSt2 lets the user run a computation that
makes use of two partially-overlapping memory regions.
Within that computation, the user can run sub-computations
bound to one or the other memory region. Furthermore, a
sub-computation can move any variable that it owns into the
common overlap via share. An example is shown in Figure 7,
where one sub-computation creates two cells: one private,
and the other shared. A second sub-computation has uncon-
strained access to the shared cell. Yet even though the private
reference is also in scope during the second sub-computation,
any attempts to access it there will fail to compile.

4 Case Study #3: Key-value Lookups
It is not uncommon to find algorithms based around key-
value maps that rely on certain keys being present at critical
moments. For example, an evaluator for well-scoped expres-
sions may maintain a symbol table, subject to the invariant
that any symbol found at an expression node should have
a corresponding entry in the symbol table. It may be awk-
ward to write “missing symbol” handlers into the expression
evaluator—doubly so if the API was designed so that missing
symbols are supposed to be impossible.

In this case study, we will see how to use the GDP concept
to build an API where the user can express the thought “this
key must be present in that map.” In the process, we will
vindicate some of those 2000 moments, forever enshrined
on Hackage, where a programmer fell into the pit of despair
and followed a map lookup by fromJust.

Figure 8 gives a small, GDP-style API based on the author’s
justified-containers package2. The key features are:

• A predicate Key ks, meaning “belongs to the key set
named ks.” A value of type Key ks k is a value of type
k, with a ghost proof that it is present in the key set
named ks.

• A predicate JMap ks, meaning “has a key set named
ks.” A value of type JMap ks k v is a Map k v, with
a key set named ks.

• The rank-2 withMap function, analogous to name, that
attaches a ghostly key set to a map. This function
encodes the notion that any map has some set of keys,
perhaps not known to us at compile time.

• The member function. This function checks if a key is
present in a map with key set ks and, if so, produces a
ghost proof of that fact using Key ks.

• Finally, the function lookup. This function is total be-
cause the key carries a ghost proof that it is present
in the map. As a result, lookup can safely return a v
instead of a Maybe v, with no fear of run-time failure.

Note that proving a key can be found in a certain map
does not mean it can only be found in that map! In Figure 9,
we see that some evidence can be re-used: we can find the
same key in a whole variety of maps.

4.1 Designing for the User’s State of Knowledge
It is instructive to compare the two lookup types k -> Map
k v -> Maybe v and Key ks k -> JMap ks k v -> v. We
do not intend to claim that one of these is better than the
other. Instead, the claim is much simpler: these two functions
reflect different expectations about the user’s knowledge.
If the user legitimately does not know whether or not a

key is present, then the Maybe-returning lookup is entirely
appropriate. The user’s incomplete knowledge about the
result of the operation is exactly reflected in the return type,
so they will not feel inconvenienced by the need to handle
both the Just v (key present) and Nothing (key absent)
cases.
On the other hand, if the user already believes the key

should be present based on some external evidence, then
they will be happier writing a program that does not need
to handle the impossible missing-key state. But to ensure
safety, they must communicate that evidence to the library
somehow; here, via the Key ks predicate.

4.2 Application: Well-formed Adjacency Lists
The power of this method becomes more apparent when
considering maps where the values are expected to reference
the keys in some way. Consider this simple adjacency rep-
resentation for directed graphs that maps each vertex to its
list of immediate neighbors:
type Digraph v = Map v [v]

2In fact, the GDP technique was developed in order to generalize the design
of justified-containers to other domains, and to add flexibility for the
end-user by providing a wider selection proof combinators.

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA M. Noonan

newtype JMap ks k v = JMap (Map k v) deriving Functor

newtype Key ks k = Key k

instance The (JMap ks k v) (Map k v)

instance The (Key ks k) k

member :: k -> JMap ks k v -> Maybe (Key ks k)

lookup :: Key ks k -> JMap ks k v -> v

reinsert :: Key ks k -> v -> JMap ks k v -> JMap ks k v

withMap :: Map k v -> (forall ks. JMap ks k v -> t) -> t

Figure 8. A fragment of the API from
justified-containers. The GDP-style predicates
Key ks k and JMap ks k v are used to represent “a value
of type k belonging to the set ks” and “a map with key set
ks”, respectively.

Well-formed Digraphs should satisfy the property that every
vertex referenced in any neighbor list is also a valid key in
the adjacency map.
Traditionally, graph APIs that use adjacency represen-

tations require well-formed graphs, but make it the user’s
responsibility to ensure well-formedness. For example, the
Data.Graph API from containers has a constructor that
will silently discard edges whose targets do not appear in
the node list.
Our GDP-style API for maps gives us a vocabulary for

translating the notion “a well-formed adjacency list” into a
program invariant that can be checked by the compiler. We
simply write what we mean: a well-formed adjacency map
should map each vertex to a list of vertices that are keys of
that same map. In other words:
type Digraph vs v = JMap vs v [Key vs v]

With the help of this type, a user can now enforce the invari-
ant “this adjacency map must be well-formed” at compile
time. A similar strategy can be used to eliminate a whole class
of bugs when using symbol tables, evaluation contexts, data-
base models, and or any other data structure based around a
recursive key-value store.

4.3 Changing the Key Set
But what about maps that are related, yet do not have ex-
actly the same key sets? As a concrete example, consider the
insert function. Although insert will usually modify the
key set of a map, we still know quite a lot about the keys
in the updated map. Imagine you were a user, in possession
of a key and a proof that it is present in the original map.
It would be quite frustrating if we were unable to use that
same key freely in the expanded map! The library author,
anticipating this need, should provide a proof combinator
that converts a proof of “k is a valid key of m” into a proof of
“k is a valid key of insert k’ v m.”

To support this use-case, justified-containers pro-
vides the rank-2 function inserting:

test = Map.fromList [(1, "Hello"), (2, "world!")]

withMap test $ \table ->

case member 1 table of

Nothing -> putStrLn "Missing key!"

Just key -> do

let table' = reinsert key "Howdy" table

table'' = fmap (map upper) table

putStrLn ("Value in map 1: " ++ lookup key table)

putStrLn ("Value in map 2: " ++ lookup key table')

putStrLn ("Value in map 3: " ++ lookup key table'')

-- Output:

-- Value in map 1: Hello

-- Value in map 2: Howdy

-- Value in map 3: HELLO

Figure 9. A usage example for the API in Figure 8. The
member function is used to check if a key is present in table;
within the scope of the Just case, key carries a phantom
proof of its presence in table. The same phantom proof can
also be used as evidence that key is present certain other
maps as well, such as table’ (table with a value changed)
and table’’ (table modified by fmap).

inserting :: Ord k => k -> v -> JMap ks k v

-> (forall ks'. JMap ks' k v

-> (Key ks k -> Key ks' k)

-> Key ks' k

-> t)

-> t

Since insertion results in a map with a new key set, we
must introduce the ghost of this new key set inside another
forall. But what are the other parameters being passed to
the continuation? They form a collection of evidence and
proof combinators that the user may need to formulate a
safety argument. Concretely, the continuation has access to:

1. The updated map, of type JMap ks’ k v. The phantom
type ks’ represents the key set ks, updated with the
newly-inserted key.

2. A function that represents the inclusion of ks into ks’.
The user can apply this function to convert a proof
that a certain key belonged to the old map (a value of
type Key ks k) into a proof that the key also belongs
to the new map (a value of type Key ks’ k).

3. Evidence that the inserted key is present in the new
key set.

The library author must perform a balancing act here.
They should give the user an ample supply of evidence and
proof combinators to support the user’s arguments, but just
what and howmuch? For example, the user may well want to
argue that a every key other than the new one is also present
in the original map, but the API provides no straightforward
way to do this. It is also somewhat awkward to introduce
yet another rank-2 function to the API.

Ghosts of Departed Proofs Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

-- Type exported, constructor hidden (but see `axiom`)

data Proof p = QED

-- Attaching proofs to values

newtype a ::: p = SuchThat a

(...) :: a -> Proof p -> (a ::: p)

x ...proof = coerce x

-- Logical constants. We can use empty data declarations,

-- because these types are only used as phantoms.

data TRUE

data FALSE

data p && q

data p || q

data p --> q

data Not p

data p == q

-- Natural deduction rules (implementations all

-- ignore parameters and return `QED`)

andIntro :: Proof p -> Proof q -> Proof (p && q)

andElimL :: Proof (p && q) -> Proof p

orIntroL :: Proof p -> Proof (p || q)

implIntro :: (Proof p -> Proof q) -> Proof (p --> q)

implElim :: Proof (p --> q) -> Proof p -> Proof q

notIntro :: (Proof p -> Proof FALSE) -> Proof (Not p)

contradicts :: Proof p -> Proof (Not p) -> Proof FALSE

absurd :: Proof FALSE -> Proof p

refl :: Proof (x == x)

-- ... and many more

-- Exported function that allows library authors to

-- assert arbitrary axioms about their API.

axiom :: Proof p

axiom = QED

Figure 10. Basic constants and functions for building up the
“proofs” in “ghosts of departed proofs”.

In the final case study, we will investigate how the library
author can separate API functions from the lemmas about
those functions, and in the process remove the need for some
of these additional rank-2 functions.

5 Case Study #4: Arbitrary Invariants
In the previous case studies, we saw how introducing

names and predicates can help us develop safe APIs that
allow the user to express correctness proofs. However, there
are a few aspects that remained awkward.

First, we have several ways that a name-like entity could
be introduced: either via the name operator itself, or through
other library-defined rank-2 functions like runSt2, withMap,
or inserting. It would be nice if the same mechanism could
be used for all of these cases.

Second, wemade extensive use of ghostly proofs carried by
phantom type parameters. But these phantom types needed
something to attach to, so we introduced various domain-
specific newtypewrappers (SortedBy, ∈, JMap). Each library
exported its own idiosyncratic proof combinators for work-
ing with its newtype wrappers. It would be better to have a
uniform mechanism for expressing, carrying, and manipu-
lating these proofs.

In this case study, we will consider what kind of APIs we
could write if we separated type-level names from the con-
straints we want to place on the named values. For example,
let us return to the head function. We want to ensure that
the user only calls head on a list xs with outer constructor
(:) (“cons”). To express this condition, we introduce one
more newtype wrapper, written ::: and pronounced “such
that”. Altogether, the phrase (a ~~ n ::: p) should be read
“a value of type a, named n, such that condition p holds.”

We can now write, very explicitly, the requirement that
our library places on the user of head: the parameter, called
xs, must have outermost constructor (:). So we simply in-
troduce a predicate IsCons using an empty datatype, and
write down the definition of a GDP-style head:

data IsNil xs

data IsCons xs

head :: ([a] ~~ xs ::: IsCons xs) -> a

head xs = Prelude.head (the xs)

The (:::) type is similar to the Refined type from the
refinement library [20], but it gains extra power when used
together with names: names are the mechanism that allows
us to take predicates about specific values and encode them
at the type level. The type ([a] ~~ xs ::: IsCons xs)
becomes a statement about the particular list being passed to
head. The library user is now free to come up with a proof
of IsCons xs in whatever way they please.

5.1 Logical Combinators for Ghostly Proofs
We now have a mechanism for encoding arbitrary properties
as phantom types. But howwill the user create ghostly proofs
to inhabit those phantom types? We can begin with a very
simple Proof type, sporting a single phantom type parameter
and exactly one non-bottom value:

data Proof p = QED

From this humble beginning, we can encode all of the rules
of natural deduction as functions that produce terms of type
Proof p. Figure 10 gives a small taste of the basic syntax
and encoded deduction rules.
Once we have constructed a proof of type Proof p, we

can use the (...) combinator to attach that proof to a value
of type a, producing a value of type (a ::: p). Note that
p will often be a proof about the wrapped value, but that is
not required! Any value can carry any proof; the only thing
that links value to proof is the use of a common name.

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA M. Noonan

5.2 Naming Library Functions
To help the user create domain-relevant proofs, a library
author may wish to export a lemma such as “reversing a
list twice gives the original list”. To express this idea, it is
not sufficient to have a name for “the original list”. We must
also be able to name some of the library’s functions. This
observation motivates an extension to the Named module
(Figure 2), adding these three items:
-- module Named, continued:

data Defn = Defn -- Type exported, constructor hidden.

-- A constraint synonym that is expected to only be

-- available in the module where `f` is defined.

type Defining f = (Coercible Defn f, Coercible f Defn)

-- Allow library authors to define introduction rules for

-- names that they have defined. The coercion is only

-- possible since this function is in the Named module.

defn :: Defining f => a -> (a ~~ f)

defn = coerce

The idea is that a library author can introduce a new name
X by defining X as a newtype alias of Defn. If the library au-
thor does not export the constructor of X, then the constraint
Defining X only holds in the module where X was defined.
It follows that the defn function can be used to attach the
name X to an arbitrary value, but only in the module where
X was defined. By exporting defn with the Defining f con-
straint, the Namedmodule allows library authors to introduce
new names and axioms, while users remain safely restrained.

How does the library author use this mechanism to intro-
duce new names and axioms in practice? In the case of the
list-reversing lemma, the author can write:
newtype Rev xs = Rev Defn

reverse :: ([a] ~~ xs) -> ([a] ~~ Rev xs)

reverse xs = defn (Prelude.reverse (the xs))

rev_rev :: Proof (Rev (Rev xs) == xs)

rev_rev = axiom

Note that, in contrast with inserting from the previous
case study, the lemmas about a function stand on their own.
The library author can add any number of lemmas about
reverse without modifying its signature. Furthermore, it
also becomes easy to create lemmas that relate multiple
functions, such as rev_length and rev_cons in Figure 11.
A sample of client code for this library appears in Figure 12,
where the user defines a dot product function that only can be
applied to same-sized lists. The user then supplies evidence
to convince the compiler that the dot product of a list with
its reverse is legal.

On the safety of defn It is instructive to momentarily
return to the “Simon” example of Section 2.4. Isn’t defn as
bad as any_name? There is certainly a danger, but only for the

-- API functions

reverse :: ([a] ~~ xs) -> ([a] ~~ Rev xs)

reverse xs = defn (Prelude.reverse (the xs))

length :: ([a] ~~ xs) -> (Int ~~ Length xs)

length xs = defn (Prelude.length (the xs))

zipWith :: (a -> b -> c)

-> ([a] ~~ xs ::: Length xs == n)

-> ([b] ~~ ys ::: Length ys == n)

-> [c]

zipWith f xs ys = Prelude.zipWith f (the xs) (the ys)

-- Names for API functions

newtype Length xs = Length Defn

newtype Rev xs = Rev Defn

-- Lemmas (all bodies are `axiom`)

rev_length :: Proof (Length (Rev xs) == Length xs)

rev_rev :: Proof (Rev (Rev xs) == xs)

rev_cons :: Proof (IsCons xs) -> Proof (IsCons (Rev xs))

data ListCase a xs = IsCons (Proof (IsCons xs))

| IsNil (Proof (IsNil xs))

classify :: ([a] ~~ xs) -> ListCase a xs

classify xs = case the xs of

(_:_) -> IsCons axiom

[] -> IsNil axiom

Figure 11. A GDP-style module for manipulating and rea-
soning about lists. A variety of lemmas are exported by the
module, to provide the user with a rich set of building blocks
for constructing safety proofs.

library author who must be very careful indeed about how
Simon is introduced. The library users are still unable to name
arbitrary values “Simon” merely by using defn, because they
do not possess the necessary Defining Simon constraint.

5.3 Building Theory Libraries
In both the St and the justified-containers case studies,
the library author exported proof combinators that encoded
basic facts about the algebra of sets. Such redundancy is
undesirable for the library authors, who have to spend more
time writing and testing, but also for the end user who has
to remember dozens of variations on the same basic proof
combinators.
Luckily, it is simple to factor out axioms and deduction

rules for specific theories from the libraries that make use
of them. For example, we could publish a small library con-
taining basic predicates and deduction rules about sets, such
as:

Ghosts of Departed Proofs Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

dot :: ([Double] ~~ vec1 ::: Length vec1 == n)

-> ([Double] ~~ vec2 ::: Length vec2 == n)

-> Double

dot vec1 vec2 = sum (zipWith (*) vec1 vec2)

-- Compute the dot product of a list with its reverse.

dot_rev :: [Double] -> Double

dot_rev xs = name xs $ \vec ->

dot (vec ...refl) (reverse vec ...rev_length)

Figure 12. A user-defined dot product function that can
only be used on same-sized lists, and a usage example. In the
implementation of dot_rev, the user makes the use of dot
well-typed by expressing a proof that vec and reverse vec
have the same length. Note that refl and rev_length are
effectively axiom schemas, and unification with the type of
dot selects the correct instances of these schemas.

data xs ⊆ ys

subset_tr :: Proof (a ⊆ b) -> Proof (b ⊆ c) -> Proof (a ⊆ c)

subset_tr _ _ = axiom

This same theory library could be used to reason about
shared St regions and about key sets for maps, already
achieving code reuse within the narrow confines of this
paper’s examples.
An extra level of confidence can be obtained by splitting

the theory library into Assumed and Derived submodules.3
A small, core set of axioms are placed in the Assumedmodule
and carefully audited for correctness. A larger set of lemmas,
derived from these axioms using GDP proof combinators,
reside in the Derived submodule. This separation allows the
library author to build up a large collection of lemmas from
a small—and hopefully easy-to-verify—set of basic axioms.

5.4 Ghosts on the Outside, Proofs on the Inside
Factoring common lemmas into theory modules helps ensure
that the module exports give a sound model of the structure
they are describing. The author only needs to check the
validity of their own theory module; others can then re-use
that validation for free.
But how can the author of a theory library be confident

that they wrote down the correct lemmas in the first place?
To increase confidence, the author of the theory library can
apply formal verification tools like Liquid Haskell [19] or
hs-to-coq [16], attempting to prove that the library presents
a sound API. Note that the tooling is only required by the
author of the library; the end-users of the theory library
still use plain Haskell. A simple demonstration using Liquid
Haskell can be found in this paper’s repository [13].

3We only have “confidence”—not “surety”—because, after all, Haskell’s type
system is inconsistent as a logic. That does not render it useless for the
evidence-pushing we need for GDP, however!

proof1, proof2 :: Proof ((p --> q) --> (Not q --> Not p))

proof1 =

implIntro $ \p2q ->

implIntro $ \notq ->

notIntro $ \p ->

(implElim p2q p) `contradicts` notq

proof2 = tableaux

Figure 13. Proving the same theorem in two different
ways. The first proof uses the proof combinators from Fig-
ure 10. The second proof uses a typechecker plugin, exposed
through the tableaux function (Section 5.5).

5.5 Building Custom Proof Tactics
For simple properties, the task of writing a proof is not too dif-
ficult. But for more sophisticated properties, the deployment
of proof tactics becomes crucial. A proof tactic is a search
strategy for proofs, usually targeted at proving one partic-
ular class of theorems. For example, the Coq tactic omega is
useful for proving theorems about arithmetic, while simpl
is useful for simplifying a complex goal.

Tactics are often designed with a specific domain in mind;
to bemost useful, theory creators (and library authors) should
be able to create their own tactics when needed.
One approach to providing custom tactics is to leverage

GHC’s support for type-checker plugins. These plugins hook
into GHC’s OutsideIn(X) inference algorithm [21], teaching
it to solve new kinds of type constraints.

As a proof-of-concept, we developed a simple typechecker
plugin that implements proof by analytic tableaux [15] for
propositional logic. This tactic can verify the satisfiability
of any valid formula of propositional logic; the naïve imple-
mentation takes about 60 lines of Haskell, plus 150 lines of
glue code to mediate between the tableaux solver and GHC.
To trigger the custom tactic, we introduce an empty in-

jective type family [17]—hidden from the user—and a single
exported function tableaux:
type family ProofByTableaux p = p' | p' -> p

tableaux :: ProofByTableaux p

tableaux = error "proof by analytic tableaux."

Morally, we want to think of ProofByTableaux p as an alias
for p. The trick is that our plugin will first get a chance to
check that the proposition p is a valid formula of proposi-
tional logic. Only then will the plugin allow GHC to replace
ProofByTableaux p with p.

For the user, the effect appears to be that tableaux can act
as a value of type Proof p whenever p is a valid formula in
propositional logic. A glance at Figure 13 demonstrates why
proof tactics are so desirable: the user can just wave their
hands and say “this is true by basic facts from propositional
logic,” instead of constructing a tedious proof by hand.

Haskell ’18, September 27–28, 2018, St. Louis, MO, USA M. Noonan

head :: Fact (IsCons xs) => ([a] ~~ xs) -> a

head xs = Prelude.head (the xs)

gdpEndpts' = do

putStrLn "Enter a non-empty list of integers:"

xs <- readLn

name xs $ \xs -> case classify' xs of

Cons -> using rev_cons xs $

return (head xs, head (reverse xs))

Nil -> gdpEndpts'

Figure 14. The original example from Figure 1, using
reflection to implicitly propagate Proofs to their use-sites.

5.6 Using Reflection to Pass Implicit Proofs
The reflection library is an implementation of Kiselyov
and Shan’s functional pearl about implicit configurations [7],
allowing the user to pass values implicitly using Haskell’s
typeclass machinery. We can combine reflection with
GDP in order to pass proofs implicitly, so they seem to appa-
rate out of thin air just when they are needed. The relevant
part of the reflection API consists of two functions: give
lets the user make a proof implicit, and given recalls an
implicit proof from the current context:
type Fact p = Given (Proof p) -- a useful constraint synonym

give :: Proof a -> (Fact a => t) -> t

given :: Fact a => Proof a

To make this approach practical, we also need some way
to apply implications to facts in the current implicit context.
Since the implications will generally be name-polymorphic,
it can be slightly tricky to apply an implication to a specific
fact. When the antecedent of the implication is a simple
predicate, we can make use of a combinator such as this:
using :: Fact (p n) =>

(Proof (p n) -> Proof q) -> (a ~~ n) -> (Fact q => t) -> t

using impl x = give (impl given)

The named parameter x :: a ~~ n is used to help select
the right proof from the context.
We now are able to reflect proofs manually, but can we

make the process more automatic? For example, could we
automatically introduce Fact (IsCons xs) to the implicit
context inside the cons branch of a pattern-match? Yes, in-
deed; pattern-matching on a GADT constructor can bring
new constraints into scope:
data ListCase' a xs where

Cons :: Fact (IsCons xs) => ListCase' a xs

Nil :: Fact (IsNil xs) => ListCase' a xs

classify' :: forall a xs. ([a] ~~ xs) -> ListCase' a xs

classify' xs = case the xs of

(_:_) -> give (axiom :: Proof (IsCons xs)) Cons

[] -> give (axiom :: Proof (IsNil xs)) Nil

Figure 14 combines these simple ingredients to create a
reflection-based version of the original GDP example from
Figure 1. Comparing the two examples side-by-side, the use
of reflection with GDP seems to offer a substantial improve-
ment to user ergonomics. On the other hand, there is a small
amount of run-time overhead due to the passing of typeclass
dictionaries for Facts, and it is not always easy to extract the
right proof from the implicit context without adding type
annotations.

6 Related Work
Phantom type parameters have several well-known appli-
cations in API design, supporting typed embedded domain-
specific languages (EDSLs) [12], pointer subtyping [11], and
access control policies [5]. Most of these applications rely on
monomorphic or universally-quantified phantom type pa-
rameters; by contrast, GDP relies on existentially-quantified
phantom names, and a rich, extensible set of combinators
for building arguments about the named values.
Previous designs that use existentially-quantified phan-

tom types include lazy state threads [9] and lightweight static
capabilities [8]. The GDP approach explicitly separates two
orthogonal concerns within these designs: the introduction
of existentially-quantified type-level names, and the manip-
ulation of proofs about those named values.
There are a variety of other approaches to checking the

correctness of Haskell code. Liquid Haskell works with an
SMT solver to verify certain classes of properties about
Haskell functions [19]. hs-to-coq converts Haskell code
to Coq code, allowing theorems to be proved within the Coq
proof assistant [16]. In both cases, the properties and proofs
exist outside of (or in parallel to) the existing Haskell code.
In the GDP approach, properties and proofs are carried by
normal Haskell types and are checked by compilation.

7 Summary
Ghosts of Departed Proofs provides a novel approach to
safe API design that enables a dialogue between the library
and the user. By giving the user a vocabulary for expressing
safety arguments, GDP-style APIs avoid the need for partial
functions or optional returns. Using this approach, we are
able to achieve many of the benefits of dependent types and
refinement types, while only requiring mild and well-known
extensions to Haskell 2010. You can try it with your own
libraries, today!

Acknowledgments
The author would like to thank Baldur Blöndal, Hillel Wayne,
Philipp Kant, Matt Parsons, and the anonymous reviewers
for their helpful feedback on a draft of this paper, and Input
Output HK for supporting this work.

References
[1] B. Abrams. The pit of success. https://blogs.msdn.microsoft.com/

brada/2003/10/02/the-pit-of-success/, 2003. Accessed: 2018-06-04.

https://blogs.msdn.microsoft.com/brada/2003/10/02/the-pit-of-success/
https://blogs.msdn.microsoft.com/brada/2003/10/02/the-pit-of-success/

Ghosts of Departed Proofs Haskell ’18, September 27–28, 2018, St. Louis, MO, USA

[2] L. Augustsson. Cayenne—a language with dependent types. In Inter-
national School on Advanced Functional Programming, pages 240–267.
Springer, 1998.

[3] A. Bove and P. Dybjer. Dependent types at work. In Language en-
gineering and rigorous software development, pages 57–99. Springer,
2009.

[4] J. Breitner, R. A. Eisenberg, S. Peyton Jones, and S. Weirich. Safe zero-
cost coercions for Haskell. SIGPLAN Not., 49(9):189–202, Aug. 2014.
ISSN 0362-1340. doi: 10.1145/2692915.2628141. URL http://doi.acm.
org/10.1145/2692915.2628141.

[5] M. Fluet and R. Pucella. Phantom types and subtyping. J.
Funct. Program., 16(6):751–791, Nov. 2006. ISSN 0956-7968.
doi: 10.1017/S0956796806006046. URL http://dx.doi.org/10.1017/
S0956796806006046.

[6] T. Freeman and F. Pfenning. Refinement types for ML. In Proceedings of
the ACM SIGPLAN 1991 Conference on Programming Language Design
and Implementation, PLDI ’91, pages 268–277, New York, NY, USA,
1991. ACM. ISBN 0-89791-428-7. doi: 10.1145/113445.113468. URL
http://doi.acm.org/10.1145/113445.113468.

[7] O. Kiselyov and C.-c. Shan. Functional pearl: Implicit configurations–
or, type classes reflect the values of types. In Proceedings of the 2004
ACM SIGPLAN workshop on Haskell, pages 33–44. ACM, 2004.

[8] O. Kiselyov and C.-c. Shan. Lightweight static capabilities. Electron.
Notes Theor. Comput. Sci., 174(7):79–104, June 2007. ISSN 1571-0661.
doi: 10.1016/j.entcs.2006.10.039. URL http://dx.doi.org/10.1016/j.entcs.
2006.10.039.

[9] J. Launchbury and S. L. Peyton Jones. Lazy functional state threads.
In ACM SIGPLAN Notices, volume 29, pages 24–35. ACM, 1994.

[10] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation for detailed
design. In Behavioral Specifications of Businesses and Systems, pages
175–188. Springer, 1999.

[11] D. Leijen. wxHaskell: A portable and concise GUI library for Haskell.
In Proceedings of the 2004 ACM SIGPLAN Workshop on Haskell, Haskell
’04, pages 57–68, New York, NY, USA, 2004. ACM. ISBN 1-58113-850-4.

doi: 10.1145/1017472.1017483. URL http://doi.acm.org/10.1145/1017472.
1017483.

[12] D. Leijen and E. Meijer. Domain specific embedded compilers. In
Proceedings of the 2nd Conference on Conference on Domain-Specific
Languages - Volume 2, DSL’99, pages 9–9, Berkeley, CA, USA, 1999.
USENIX Association. URL http://dl.acm.org/citation.cfm?id=1267936.
1267945.

[13] M. Noonan. Ghosts of departed proofs. http://www.github.com/
matt-noonan/gdp-paper/, 2018. Accessed: 2018-06-03.

[14] M. Noonan. The gdp library. http://hackage.haskell.org/package/gdp,
2018. Accessed: 2018-06-03.

[15] R. M. Smullyan. First-order logic. Courier Corporation, 1995.
[16] A. Spector-Zabusky, J. Breitner, C. Rizkallah, and S. Weirich. Total

Haskell is reasonable Coq. In Proceedings of the 7th ACM SIGPLAN
International Conference on Certified Programs and Proofs, pages 14–27.
ACM, 2018.

[17] J. Stolarek, S. Peyton Jones, and R. A. Eisenberg. Injective type families
for Haskell. In Proceedings of the 2015 ACM SIGPLAN Symposium
on Haskell, Haskell ’15, pages 118–128, New York, NY, USA, 2015.
ACM. ISBN 978-1-4503-3808-0. doi: 10.1145/2804302.2804314. URL
http://doi.acm.org/10.1145/2804302.2804314.

[18] A. Timany, L. Stefanesco, M. Krogh-Jespersen, and L. Birkedal. A
logical relation for monadic encapsulation of state: Proving contextual
equivalences in the presence of runST. Proceedings of the ACM on
Programming Languages, 2(POPL):64, 2017.

[19] N. Vazou. Liquid Haskell: Haskell as a theorem prover. University of
California, San Diego, 2016.

[20] N. Volkov. Announcing the refinement types library. http://
nikita-volkov.github.io/refined/, 2016. Accessed: 2018-05-30.

[21] D. Vytiniotis, S. P. Jones, T. Schrijvers, and M. Sulzmann. OutsideIn(x):
Modular type inference with local assumptions. Journal of functional
programming, 21(4-5):333–412, 2011.

[22] P. Wadler. Linear types can change the world! In Programming
Concepts and Methods. North, 1990.

http://doi.acm.org/10.1145/2692915.2628141
http://doi.acm.org/10.1145/2692915.2628141
http://dx.doi.org/10.1017/S0956796806006046
http://dx.doi.org/10.1017/S0956796806006046
http://doi.acm.org/10.1145/113445.113468
http://dx.doi.org/10.1016/j.entcs.2006.10.039
http://dx.doi.org/10.1016/j.entcs.2006.10.039
http://doi.acm.org/10.1145/1017472.1017483
http://doi.acm.org/10.1145/1017472.1017483
http://dl.acm.org/citation.cfm?id=1267936.1267945
http://dl.acm.org/citation.cfm?id=1267936.1267945
http://www.github.com/matt-noonan/gdp-paper/
http://www.github.com/matt-noonan/gdp-paper/
http://hackage.haskell.org/package/gdp
http://doi.acm.org/10.1145/2804302.2804314
http://nikita-volkov.github.io/refined/
http://nikita-volkov.github.io/refined/

	Abstract
	1 Introduction
	1.1 Common Idioms for Handling Pre-conditions
	1.2 Leading the User into Temptation
	1.3 Who Is to Blame?
	1.4 An Alternative: Ghosts of Departed Proofs
	1.5 The Structure of This Paper
	1.6 A Very Short Tutorial on Safe Coercions

	2 Case Study #1: Sorted Lists
	2.1 Conjuring a Name
	2.2 Implementing a Safe API for Sorting and Merging
	2.3 Applications to User Code
	2.4 Aside: On the Danger of Naming a Ghost

	3 Case Study #2: Sharing State Threads
	4 Case Study #3: Key-value Lookups
	4.1 Designing for the User's State of Knowledge
	4.2 Application: Well-formed Adjacency Lists
	4.3 Changing the Key Set

	5 Case Study #4: Arbitrary Invariants
	5.1 Logical Combinators for Ghostly Proofs
	5.2 Naming Library Functions
	5.3 Building Theory Libraries
	5.4 Ghosts on the Outside, Proofs on the Inside
	5.5 Building Custom Proof Tactics
	5.6 Using Reflection to Pass Implicit Proofs

	6 Related Work
	7 Summary
	References

